CYP734A genes encode cytochrome P450 monooxygenases that control the level of bioactive BRs by degrading BRs. However, fertile plants overexpressing CYP734As have not been reported in rice. Here, we isolated a novel semi-dominant mutant brd3-D, in which T-DNA was inserted approximately 4 kb upstream of the CYP734A4 gene (GenBank Accession AB488667), causing its overexpression. The mutant is characterized by dwarfism, small grains, and erect leaves and is less sensitive to brassinolide-induced lamina joint inclination and primary root elongation. However, increased grain number per main panicle and improved seed setting rate were also found in heterozygous brd3-D. To our knowledge, these traits have not been reported in other BR deficient mutants. Quantitative real-time PCR analysis indicated that phenotypic severity of the brd3-D mutant is positively correlated with the CYP734A4 transcription level. In accordance with the increased expression of CYP734A4, a lower castasterone (a rice BR) content was detected in the brd3-D mutants. Knockout of brd3-D by using the CRISPR/Cas9 system rescued the mutation. In addition, transgenic plants overexpressing CYP734A4 with the 35S enhancer mimicked the brd3-D phenotypes, confirming that moderate overexpression of the CYP734A4 gene can improve grain number per main panicle and the seed setting rate in rice. Further studies showed that overexpression of CYP734A4 influences the expressions of multiple genes involved in the BR pathway, and the expression of CYP734A4 is induced by exogenous brassinolide, confirming the negative regulatory role of CYP734A4 in the BR pathway. CYP734A4 might provide a useful gene resource for developing new high-yielding rice varieties." />

一品楼免费信息论坛51茶馆,栖凤楼发布信息交流,深圳大圈高端工作室,51龙凤茶楼论坛最新消息今天

近期论文
您的位置: 首页?> 科研成果?> 近期论文?>
Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4
,?2017,93(1):197-208.
10.1007/s11103-016-0558-4

Abstract

Brassinosteroid (BR) homeostasis and signaling are crucial for plant growth and development. CYP734A genes encode cytochrome P450 monooxygenases that control the level of bioactive BRs by degrading BRs. However, fertile plants overexpressing CYP734As have not been reported in rice. Here, we isolated a novel semi-dominant mutant brd3-D, in which T-DNA was inserted approximately 4 kb upstream of the CYP734A4 gene (GenBank Accession AB488667), causing its overexpression. The mutant is characterized by dwarfism, small grains, and erect leaves and is less sensitive to brassinolide-induced lamina joint inclination and primary root elongation. However, increased grain number per main panicle and improved seed setting rate were also found in heterozygous brd3-D. To our knowledge, these traits have not been reported in other BR deficient mutants. Quantitative real-time PCR analysis indicated that phenotypic severity of the brd3-D mutant is positively correlated with the CYP734A4 transcription level. In accordance with the increased expression of CYP734A4, a lower castasterone (a rice BR) content was detected in the brd3-D mutants. Knockout of brd3-D by using the CRISPR/Cas9 system rescued the mutation. In addition, transgenic plants overexpressing CYP734A4 with the 35S enhancer mimicked the brd3-D phenotypes, confirming that moderate overexpression of the CYP734A4 gene can improve grain number per main panicle and the seed setting rate in rice. Further studies showed that overexpression of CYP734A4 influences the expressions of multiple genes involved in the BR pathway, and the expression of CYP734A4 is induced by exogenous brassinolide, confirming the negative regulatory role of CYP734A4 in the BR pathway. CYP734A4 might provide a useful gene resource for developing new high-yielding rice varieties.
黔西nwm351| 桃江县u1s434| 油尖旺区abx118| 鸡泽县2of30| 嵊州市2pj824| 河津市ow2990| 宁南县qdb959| 安塞县e2m448| 施秉县zrf191| 大庆市0bk92| 台州市tg0437| 石景山区lox315| 莆田市n1o538| 当涂县xzv932| 孟连1wp932| 禹城市xf1327| 泰州市ixh231